
Leassons Learned – EisMan project

Introduction

This document describes the retrospective results of the pilot project “Eisman App” within

the openK consortium. The retrospective workshop was conducted November 10th 2015 with

participation of clients and suppliers. The goal was to externalize lessons learned from this

first project for future projects of the consortium. In general, some infrastructure topics, the

development process, the requirements specification, and the estimation process were most

discussed. This document focuses on lessons learned, as well as identifying open questions

to be discussed, which might affect future projects. The document does not contain project-

specific or vendor-specific topics.

The key findings of the workshop were:

• Even when working agile, an early common understanding of requirements is

essential for the project success

• Minor and medium deviations in estimations can be compensated with “shared pain,

shared gain”, major must be early communicated and handled with change requests.

• It is essential to follow a proper Scrum process, including regular meetings and

Sprints

In the following, these key findings as well as additional important lessons learned are

described in detail.

Documentation and communication

The continuously productive and intense communication throughout the project duration

was received very positively and as seen as a crucial success factor for future projects. The

daily scrum meetings, in which even the product owner participated on a regular basis, were

considered to be very useful. As a minor remark, the meetings could have been even more

structured following the SCRUM guidelines, especially to communicate closed task in the

daily meetings. The role of a Scrum master would have been beneficial to enforce this.

However, during the review it turned out that some misunderstandings have been occurring,

which are related to both a not closed loop of communication and the way the

documentation was provided. It must be ensured e.g. via feedback culture that any

misunderstanding is cleared quickly.

It was reported that relevant documents were sometimes hard to find and access. They were

created in different formats, mainly distributed via email, or stored in various systems. As

such, the traceable documentation of changes and decisions was especially difficult. At the

time, there were not any defined rules or guidelines, regarding which kind of documentation

shall be created by whom, when, in which format, and how it shall be distributed. These

rules and guidelines shall be defined for follow-up projects. This includes defined formats as

well as guidelines on how documents are stored and versioned. The pragmatic and seamless

communications between the project partners was identified as a crucial criterion, as well as

open formats, ideally modifiable with open source tools.

Summary:

� Productive and continuous communication between all partners is essential

� Daily SCRUM including the product owner were considered to be very helpful

TODOs:

� Definition of communication and documentation guidelines (first version by PPC,

later the QC takes over this task)

Eclipse Infrastructure / IP Process

The project and all its code artefacts are hosted on the Eclipse infrastructure and published

under the EPL. All necessary agreements, especially on the suppliers’ sides were signed

immediately, which shows the strategic interest of the supplier. However, this seamless

process must be ensured for future suppliers as well.

On project start and for the first weeks, the Eclipse infrastructure (Git and build server) was

not yet ready to be used, the duration of necessary processes, such as the project proposal

were not foreseen in the time schedule. Based on this experience, the critical path shall be

analyzed. This information should enable future projects and committers to be prepared and

necessary paperwork should be done early enough to have a running infrastructure at

projects kick-off. As a fallback solution, projects can be hosted on any other open platform in

the beginning (e.g. GitHub) and transferred, once the infrastructure is set-up.

The IP Process for some components took longer than expected (2-3 month). While a

component is under review, it cannot really be used productively, as there is a risk, that it

does not pass the IP review for license or IP related issue. In collaboration with the Eclipse

Foundation, there should be a discussion on how this issue can be addressed for future

projects. Besides potentially speeding up the process itself, a list of already reviewed

components was considered to be helpful. The expected number of new frameworks to be

introduced in the project is expected to be lower for future projects, as some common basic

frameworks are already available. However, updating the version of existing frameworks was

identified as another crucial case, as this might require several new IP reviews in parallel.

Therefore, any potential version updates should be planed as early as possible. Currently,

there is not any formal process defined for selecting additional technologies, yet. This shall

be done by the AC, once it is installed.

There are open questions on how committers for existing openK projects get elected but

also how they can potentially be removed from the project. This is related to quality

assurance, as committers can potentially contribute unwanted changes. As of now, the plan

is to follow the standard Eclipse processes, but in parallel, keep an eye on this issue, if any

openK specific adaptations are required. As an example, sharing the project lead between

supplier and contractor might be a reasonable way to share the control over a project. The

quality committee might also come up with additional requirements for committers on

projects based on their quality assurance plan.

Summary:

� Necessary infrastructure, processes, and agreements should be communicated

beforehand to suppliers and must be initiated in time to ensure a running

infrastructure on project start

TODOs:

� Capture the critical path for new committers and projects and provide guidelines on

how early things shall be initialized in the future (BTC?)

� Feedback session with the Eclipse Foundations on the described issues with the IP

process, Speed-Up, “white-list”, process for version updates (Steering committee?)

� Process for selecting frameworks in the future (Architecture committee?)

� Review the standard Eclipse committer process (Quality committee)

� How to ensure the continuous quality in projects in an open ecosystem? (Quality

committee)

Development Process

In general, the specification, communication, and common understanding of the

requirements were identified as one the most crucial success factors for the project. The

agile SCRUM process was received as positive. However, there were not regular Sprints

during the regular project duration, but only two at a later time. Once regular Sprints were

finally established, the results of those were meeting the requirements of the stakeholders.

The general set-up, the exploratory character of the project and the domain posed some

notable challenges to parts of the project’s development process. The corresponding

“lessons learned” are summarized in the following paragraphs, based on the affected

activity.

Requirements Specification

The requirements specification was done in three phases, the first two are in preparation of

project, the third is during the project is delivered. This process is also relevant for future

projects:

1. First the group of sponsors specified an initial version of requirements.

2. The initial requirements were presented to and discussed with potential suppliers.

Based on their queries and feedback, the requirements were refined to the final call

for proposals. Based on this, suppliers provided their proposals. I has been pointed

out during the retrospective workshop, that by submitting a proposal, supplier reflect

and communicate their detailed understanding of the given requirements.

3. Finally, after a proposal has been accepted and the project started, the requirements

were specified in detailed in an agile process and with close communication between

the supplier and the product owner.

It was pointed out that is necessary to achieve a common understanding of the overall

system as well as a common vocabulary. Therefore, even when working in an agile process,

the backlog should be commonly understood. This also helps to identify complex

requirements, which should be planned in early sprints to reduce the risk.

Early UI mock-ups were increasing a common understanding of requirements. Furthermore,

the introduction of state or BPNM diagrams for specifying use cases significantly reduced

misunderstandings. This technique should be used for future projects, as well. It was

discussed to use BPMN for an initial requirements specification in the future.

Summary:

� An early common understanding of the overall system is important, even when

working agile

� Specifications in BPNM were considered to be very useful

� Early UI Mock-Ups help to get a common understanding of use cases

� Complex requirements should be identified and realized as early as possible

Estimation

The general challenge posed by a „fixed price“ project combined with an agile approach was

discussed. While there is a total estimation in the beginning of the project, requirements are

detailed and potentially changed later on. The “shared pain, shared gain” approach

compensated for small and medium deviations, but did not work for requirements, which

significantly changed the initial overall estimation. For those, change request should be

submitted as early as possible.

There was a discussion about how to come up with more precise overall estimations at the

proposal phase. For some use cases, test data could provide more insights to estimate the

complexity. More suggested approaches are: Additional workshops for detailing

requirements, external review of estimations, and external estimation by third-parties

before the call for proposals is done. On the client side, estimating the value of a system

before doing a call for proposal was also considered. Finally, workshops or dedicated

projects could help to identify complex requirements before the proposal phase, this would

enable one to point out unrealistic estimations for certain requirements. Furthermore, it

should be made explicit in proposals, if certain requirements are planned to be implemented

as “platform” components, e.g. the CIM model, as this requires more effort and affects the

estimation.

During the project, clients pointed out that an ongoing status update on the estimations of

items in the backlog is important to track the general project scope, to communicate

deviations and to identify the need for a change request. Therefore, there should be a

regular review of the original estimations of backlog items, even if they are not yet planned

in the sprint. Any deviation should be communicated as early as possible to get an early

awareness of any risks

Summary:

� Minor and medium deviations in estimations can be compensated with “shared pain,

shared gain”, major must be handled with change requests

� During the project, backlog items should be continuously reviewed about their

original estimations, any deviations should be communicated

TODOs:

� Discuss potential refinements in the estimation process during the proposal phase

(Steering Committee?)

Sprint Review

The continuous delivery of a demo able product at the end of every sprint was identified as

an essential success factor for any future project. It allows the product owner to compare

the results with the given requirements as well as to provide early feedback and therefore

reduce the risk for misunderstandings. However, the requirement for an on-going runnable

product can collide with the implementation of cross-cutting requirements. It needs to be

clarified if this is a one time issue due to the fact that this was the first oK module or if the

same issue may occur in future, too, until a complete data model will be available. As an

example, in the pilot project, when the data model (CIM) was initially specified, when there

was not yet any UI or demo able feature. This data model was considered to be one of the

most valuable outcomes of the overall project, as it can also be used as a basis for future

projects.

However, it was discussed, if even these kinds of basic artefacts should be developed in a

more iterative way based on vertical slices, even if this would require additional refactoring

efforts later. This would help to ensure common understanding on the currently

implemented requirements. The ability to have a runnable and demonstrable system at the

end of a Sprint must be explicitly considered when planning Sprints as it influences the

priorities of the product owner. Ideally, there is a precise description of the expected demo

scenario. After a Sprint, the system must be explicitly reviewed by the product owner. This

procedure requires a running project infrastructure including a running build from day one,

as well as a set-up demonstration system for deploying the results of every Sprint. The ability

to have demo able slices should even influence the scope of new projects. However, it was

agreed, that even though continuous delivery shall be the default for all future projects,

there might be some cross-cutting concerns, which will require deviations to this. One

suggestion to deal with these problems was to extract these concerns into separate projects.

In this case, intermediate results must still be carefully reviewed after every Sprint.

Summary:

� Runnable slice shall be delivered after every Sprint by default and from the beginning

� This must be explicitly considered by the product owner when planning the Sprint

� Infrastructure for delivery and demonstration must be available from day one

Miscellaneous and open questions

� Project resources should have overlapping tasks to reduce the risk of a drop out of

team members.

� Any test data required from clients should be identified and requested as early as

possible, as providing the data usually takes time.

� How and when will the system be deployed in a productive environment?

� Where exactly is the border between the openK platform and SCADA systems?

� How can the developed CIM profile be published, ideally under an open source

license?

